Part-Based R-CNNs for Fine-Grained Category Detection
نویسندگان
چکیده
Semantic part localization can facilitate fine-grained categorization by explicitly isolating subtle appearance differences associated with specific object parts. Methods for pose-normalized representations have been proposed, but generally presume bounding box annotations at test time due to the difficulty of object detection. We propose a model for fine-grained categorization that overcomes these limitations by leveraging deep convolutional features computed on bottom-up region proposals. Our method learns whole-object and part detectors, enforces learned geometric constraints between them, and predicts a fine-grained category from a pose-normalized representation. Experiments on the CaltechUCSD bird dataset confirm that our method outperforms state-of-the-art fine-grained categorization methods in an end-to-end evaluation without requiring a bounding box at test time.
منابع مشابه
Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network Features
Although recent advances in regional Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their response time is still slow for real-time performance. To address this issue, we propose a method for region proposal as an alternative to selective search, which is used in current state-of-the art object detect...
متن کاملCascade one-vs-rest detection network for fine-grained recognition without part annotations
Fine-grained recognition is a challenging task due to the small intra-category variances. Most of top-performing finegrained recognition methods leverage parts of objects for better performance. Therefore, part annotations which are extremely computationally expensive are required. In this paper, we propose a novel cascaded deep CNN detection framework for fine-grained recognition which is trai...
متن کاملWhere to Focus: Deep Attention-based Spatially Recurrent Bilinear Networks for Fine-Grained Visual Recognition
Fine-grained visual recognition typically depends on modeling subtle difference from object parts. However, these parts often exhibit dramatic visual variations such as occlusions, viewpoints, and spatial transformations, making it hard to detect. In this paper, we present a novel attention-based model to automatically, selectively and accurately focus on critical object regions with higher imp...
متن کاملBoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance
In this paper, we focus on fine-grained recognition of vehicles mainly in traffic surveillance applications. We propose an approach orthogonal to recent advancement in fine-grained recognition (automatic part discovery, bilinear pooling). Also, in contrast to other methods focused on fine-grained recognition of vehicles, we do not limit ourselves to frontal/rear viewpoint but allow the vehicles...
متن کاملFine-Grained Categorization for 3D Scene Understanding
Fine-grained categorization of object classes is receiving increased attention, since it promises to automate classification tasks that are difficult even for humans, such as the distinction between different animal species. In this paper, we consider fine-grained categorization for a different reason: following the intuition that fine-grained categories encode metric information, we aim to gen...
متن کامل